The role of deep ocean circulation in setting glacial climates

نویسنده

  • Jess F. Adkins
چکیده

[1] The glacial cycles of the Pleistocene involve changes in the circulation of the deep ocean in important ways. This review seeks to establish what were the robust patterns of deep-sea water mass changes and how they might have influenced important parts of the last glacial cycle. After a brief review of how tracers in the modern ocean can be used to understand the distribution of water masses, I examine the data for biogeochemical, circulation rate, and conservative tracers during glacial climates. Some of the robust results from the literature of the last 30 years include: a shoaled version of northern source deep water in the Atlantic, expanded southern source water in the abyss and deep ocean, salt (rather than heat) stratification of the last glacial maximum (LGM) deep-sea, and several lines of evidence for slower overturning circulation in the southern deep cell. We combine these observations into a new idea for how the ocean-atmosphere system moves from interglacial to glacial periods across a single cycle. By virtue of its influence on the melting of land-based ice around Antarctica, cooling North Atlantic Deep Water (NADW) leads to a cold and salty version of Antarctic Bottom Water (AABW). This previously underappreciated feedback can lead to a more stratified deep ocean that operates as a more effective carbon trap than the modern, helping to lower atmospheric CO2 and providing a mechanism for the deep ocean to synchronize the hemispheres in a positive feedback that drives the system to further cooling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitionin...

متن کامل

Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages

[1] An idealized general circulation model is constructed of the ocean’s deep circulation and CO2 system that explains some of the more puzzling features of glacial-interglacial CO2 cycles, including the tight correlation between atmospheric CO2 and Antarctic temperatures, the lead of Antarctic temperatures over CO2 at terminations, and the shift of the ocean’s dC minimum from the North Pacific...

متن کامل

Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study

Atmospheric CO2 was ∼90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ 13C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO2 variati...

متن کامل

Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints

[1] The ocean thermohaline circulation is important for transports of heat and the carbon cycle.We present results from PMIP2 coupled atmosphere-ocean simulations with four climate models that are also being used for future assessments. These models give very different glacial thermohaline circulations even with comparable circulations for present. An integrated approach using results from thes...

متن کامل

Optimal tuning of a GCM using modern and glacial constraints

In climate models, many parameters used to resolve subgrid scale processes can be adjusted through a tuning exercise to fit the model’s output to target climatologies. We present an objective tuning of a low resolution Atmosphere–Ocean General Circulation Model (GCM) called FAMOUS where ten model parameters are varied together using a Latin hypercube sampling method to create an ensemble of 100...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013